

To Integrate Point-of-Care and
Laboratory Automation System of BNP testing
Mei-E Yang ${ }^{1}$, Hsin-Hsin Chang ${ }^{1}$, Ching-Yi Lin ${ }^{1}$, Chi-Kuan Chen ${ }^{12}$
Department of Laboratory Medicine ${ }^{1}$ and Department of Pathology ${ }^{2}$,
Mackay Memorial Hospital ,Taipei, Taiwan
Abstract
Table 1. BCI BNP precision performance on Beckman Coulter UniCel ${ }^{*}$ DxI 800 .

Congestive heart fallure (CHF) is a complex syndrome occurs when the heart is unable to pump sufficiently to maintain blood flow to meet the body's need, vascular and lung. When under the stress, the heart secret a 108 -amino acid pro form of natriuretic peptide (proBNP), then proBNP will be cleaved into two molecular: a 32 -amino acid B-type natriuretic peptide (BNP) and a 76 -amino ACCF/AHA Heart Failure Guideline, both BNP and NT-proBNP have good correlation with heart failure severity, and both of them can be used to heart failure diagnosis and prognosis.
There are multiple commercial BNP and NT-proBNP testing in the market, include automation system and point-of-care testing (POCT) system, each of
them has its own characteristic. POCT is a global trend to obtain patient data in 15-20 minutes at the bed site, it is a suitable tool for physicians to diagnose emergency cases immediately. However, for central laboratory, how to control the data quality and consistency is the most important objective. Therefore, how to integrate POCT and automation system in the hospital is imperative. system) and Beckman ${ }^{\star}$ Dx1 600 (Beckman BNP $=1.095 \times$ Triage BNP - 20.85, $R=09938$). It means that we can diagnose emergency patients by Triage ${ }^{\star}$ BNP in a short TAT, then monitoring CHF patients by Beckman system (true TAT: 24.7 mins v.s. 38.3 mins). In addition, we also investigate the clinical performance of BNP and NT-proBNP on Triage ${ }^{\infty}$ system, to find out which biomarker is more suitable for the group difference in our hospital.

Methods
Alere Triage" MeterPro is a Point-of-Care testing system which can perform both BNP and NT-proBNP tests by EDTA whole blood specimens. The Alere
Triage" BNP Test for Beckman Coulter* Immunoassay Systems (BCI BNP) Triage" BNP Test for Beckman Coulter" Immunoassay Systems (BCI BNP) interchangable BNP results between the Alere Triage "MeterPro and Beckman Coulter UniCel ${ }^{\circ}$ DxI 800 or Beckman Coulter Access" 2 Immunoassay System. Precision Study*:
The study used three different levels liquid quality control (Liquichek ${ }^{\text {TM }}$ Cardiac Markers Plus, Bio-Rad) to perform the precision test: (1) within-run precision: testing each level controls for 10 times (2) between-day precision: this study was conducted over 5 days, testing each level controls 5 times per day. Correlation Study*:
We collected 68 random ED patients and used the EDTA whole blood samples to performed BNP testing on Triage ${ }^{\text {M }}$ MeterPro, then centrifuged the specimens by $3000 \mathrm{rpm}, 10$ minutes to obtain the plasma to perform NTproBNP and BCl BNP .

Turnaround Time (TAT):
The assay time claimed by manufacture are 15 minutes on both Triage and UniCel ${ }^{\circ}$ Dx1 800 . Most of the automation system is only suitable for using plasma, so the blood samples inevitably require centrifugation. Because of
this, the true TAT is bound to extend. This study will retrieve the true TAT from LIS system. This TAT is calculated from sample submission to release the report to LIS.

- Results were calculated by EP Evaluator version 8 sottware to comply with the CLSI

Results
Precision results of the BNP results on UniCel' DxI 800 are showed in Table 1 (See Table 1). The CV is from 1.8% to 3.85%, displaying a well imprecision performance of BCI BNP .

Conclusion
Triage ${ }^{*}$ BNP is the orly BNP testing which can perform on both POC system (Triage ${ }^{\text {M MeterPro) and autornatic system (Beckman UniCel' Dxl } 800 \text {) in the }}$ market This study demonstrates the highly correlation and the different TAT between two systems. If we can properly use the characteristic of each system on the different needs, e.g. using POC BNP to diagnose emergency patients by short TAT, then using automatic BNP to monitor the inpatients by highthroughput batch, it will bring the greater benefit for patients and hospital Although NT proBNP can also aid to diagnose CHE, it seems might influence by other factors (e. \&. renal fallure, age...etc.), Therefore, NT-porBNP is more sultabie for eutpatient with known meditual history.
(Within Run: continuously 10 times of each level : Between Day: 5 times per day, tested

Precision	Level	Mean	SD	\%CV
Within Run	1	83.0	1.49	1.80%
	2	338.5	13.03	3.85%
	3	1227.1	30.92	2.52%
Between Day	1	82.4	2.00	2.43%
	2	326.4	11.89	3.64%
	3	1230.2	30.70	2.50%

The BNP results between Triage" MeterPro and UniCel ${ }^{*}$ DxI 800 showed high correlation, 68 specimens were compared over a range of 5.0 to 4770.0
$\mathrm{pg} / \mathrm{mL}$. The correlation coefficient (R) was 0.9938 , and the slop and intercept were 1.095 and -20.85 (See Figure 1). The difference between the two methods was within allowable error for 95.6% ($65 / 68$ specimens). The average Error Index was ($Y-X$)/TEa was $0.23(-0.96$ to 1.23 , TEa was $20 \mathrm{pg} / \mathrm{mL}$ or 20%) (See Figure 2).

Figure 1. The BNP results between two method. X
method was Triage BNP, and Y method was Beckman UniCel
Dxl 800 . The correlation was Y Dx1800. The correlation was Y
$=1.095 \mathrm{X}-20.85, \mathrm{R}=0.9938$. (MDP: Medical detection point: Heart failure rule-out:
$<100 \mathrm{pg} / \mathrm{mL}$, rule-in: >400 $\mathrm{pg} / \mathrm{mL}$)

Figure 2. The Error Index of BNP between Triage and DXI
800. The difference between the two methods was within
allowable error for 65 of 68 allowable error for 65 of 68
specimens (95.6\%). The average Error Index $(y-x) /$ TEa
was 0.23 , with a range of -0.96 to 1.23 . The largest Error Index $20.5 \mathrm{pg} / \mathrm{mL}$.

Although the correlation between Triage and UniCel" Dx| 800 was good, the TAT of UniCel" DxI 800 was 10 minutes longer than Triage" (See Figure 3).

Turnaround Time (TAT)				
		inutes)	Figure 3. Turnaround time (TAT). The TAT results was retrieved from LIS system. The average TAT on Triage system was 24.7 mins , and the average TAT on DxI 800 was 38.3 mins.	
Table 2. Comparison agreement between BNP and NT-proBNP on Triage ${ }^{*}$ MeterPro system				
		BNP		
		Neg	Pos	Total
	Neg	35	0	35
NT-probnP	Pos	9	24	33
Agreement		79.50\%	100\%	86.80\%

Reference

1. Clyde W. Yancy, et al, 2013 ACCF/AHA Guideline for the Management of Heart Failure. Circulation. 2013.
2. Stephen A. Hill, et al. Use of BNP and NT-proBNP for the diagnosis of heart fallure in the emergency department: a systematic review of the evidence Heart Fail Rev, 2014.
3. John Kiekshus, et ol. Rosuvastatin in Oider Patients with Systolic Heart Failure. NEIM. 2007
4. Pornpen Srisawasdi, et of. The Effect of Renat Dysfunction on UNP NT. proBNP, and Their Ratio. Am / Clin Pothot. 2010.

Measure the Effects c on Blood Keton

Chao-Weiliu ${ }^{1}$, Chih-Hsuan Kuo ${ }^{1}$, TzL ${ }^{-}$Department of Laboratory Medicine Hospital, Taipei,
ound
alytical handling of blood samples can influence the lab Allection time and various transported conditions can ac
uits. Blood ketone traditionaliy requires to be collected examine the possibility of combining blood ketone test f ketone under iced and room temperature conditions. od
samples were collected in heparinized tubes and analyz e Optium Xceed. Each sample was divided into 2 aliquo od was analyzed at $0,30,60,120$ and 180 min incubatic re

an bied. ketone in in high level ($3.0 \mathrm{mmo} / \mathrm{L}$, the diffle Thin 120 min (Figure 3). These rewilts show that temp
5120 min after-pecimencellotion © 5
of the emergency depas tment onder proportive, whi Ir wore accounted for $64 \$$, blood ketane order thine

Clinical Chemistry PD-05

Measure the Effects of Temperature on Blood Ketone Stability

Chao-Wei Liu ${ }^{1}$, Chih-Hsuan Kuo ${ }^{1}$, Tzu-I Chien ${ }^{1}$, Mo Siu-Mei Lee ${ }^{1}$ ${ }^{1}$ Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan

Background

Pre-analytical handling of blood samples can influence the laboratory results. With the increases in lab tests, sample collection time and various transported conditions can adversely affect the sample quality and accuracy of test results. Blood ketone traditionally requires to be collected separately from ammonia and lactate. In this study, we examine the possibility of combining blood ketone test with ammonia and lactate by measuring the stability of ketone under iced and room temperature conditions.

Method

Blood samples were collected in heparinized tubes and analyzed by electrochemical method using the MediSense Optium Xceed. Each sample was divided into 2 aliquot and stored at room or refrigerated $\left(4^{\circ} \mathrm{C}\right)$ temperature until time of test. To determine the effect of temperature on ketone stability, the heparinized whole blood was analyzed at $0,30,60,120$ and 180 min incubation time points.

Figure

Figure 1. Blood ketone sample concentration percentage distributed (corresponds to the left Y -axis), individual specimen concentration shows by small circular dots (corresponds to the right Y -axis).

Figure 3. percentage of difference of Blood ketone in different incubation time and temperature at concentration greater than $3.0 \mathrm{mmol} / \mathrm{L}$.

Figure 2. percentage of difference of Blood ketone in different incubation time and temperature between concentration at $0.6-3.0 \mathrm{mmol} / \mathrm{L}$.

Figure 4. Analysis of blood ketone related order in emergency department.

Result

In median blood ketone level ($0.6-3.0 \mathrm{mmol} / \mathrm{L}$), the measurement difference was within $10 \%(7.0 \pm 6.6)$ for 120 min [Figure 2]. However, in high level ($>3.0 \mathrm{mmol} / \mathrm{L}$), the difference of blood ketone was less than 5% (2.7 ± 2.0) within $120 \mathrm{~min}[$ Figure 3]. These results show that temperature has minimal effect on the blood ketone stability up to 120 min after specimen collection.

Conclusion

Analysis of the emergency department order proportion, which combine Lactic acid or Ammonia with blood ketone order were accounted for 64%, blood ketone order alone were accounted for 36% [Figure 4]. Given that ammonia and lactate levels are known to be stable on iced condition, our results suggest it is possible to include blood ketone with ammonia and lactate tests using heparinized tubes transferred on ice condition.

Clinical
Chemistry

From diagnostic biobank to research biobank, a pilot study

Background

A diagnostic biobank contains a lot of human material, which are normally stored for a week. Turned into a research biobank, it would become valuable for researchers because it rapidly would contain a large amount of samples from hospital patients with a variety of diagnoses and demography.
To convert the diagnostic biobank into a research biobank, we need a written consent from the patients,
In April 2013 the Regional Committees for Medical and Health Research Ethics in Norway, approved a consentform allowing transferal of surplus biological material into a research biobank at Diakonhjemmet Hospital. They also approved that a signed written consent gave possibility to collect information from the hospital journal and other health registries. We therefore wanted to find out if patients are willing to sign this consentform and experience how many samples and aliquots we could collect.

Methods

The study was performed as a pilot study from September 9th to December 9th 2015. We intended to ask all patients hospitalized at the Medical department to sign the consentform after given oral information by the nurses and the physicians.
The department of Medical Biochemistry collected the consentforms, used the laboratory information system to register the number of blood collections from the included patients and also to register the different patients diagnosis into an Excel sheet.
Then we calculated how much surplus biological material the number of blood collections generated. Divided into $0,5 \mathrm{~mL}$ aliquots we calculated the theoretical number of aliquots in our diagnostic biobank.

Result and discussion

During the study period 736 patients were hospitalized at the ward. $34,1 \%$ of these patients were actually asked to sign the form. Of the collected forms $69,7 \%$ gave permission, $4,4 \%$ declined and $25,9 \%$ of the forms were not valid due to formal errors.
Of those who consented, 924 blood collections were performed. This generated a total number of 8705 mL serum-gel tubes, 7654 mL . EDTA-tubes and $3612,7 \mathrm{~mL}$ Citrate-tubes. The potential volume for the research biobank, when divided into $0,5 \mathrm{~mL}$ aliquots were 1740 serum aliquots, 3060 EDTA aliquots and 722 Citrate plasma aliquots.
Since only $34,1 \%$ of the hospitalized patients were asked, and $25,9 \%$ of the consentforms were unapproved, our study shows that there is a potential to improve the logistic in the process of collecting the consentforms. It is important that the nurses or the physicians ask all hospitalized patients and make sure that the consentforms are correctly completed.

	samples collected	surplus volume after analyzing	total 0.5 m aliquots
Serum tubes collected	870	1 mL	1740
EDTA tubes collected	765	2 mL	3060
Citrate tubes collected	361	1 mL	722
Total	1996		5522

Conclusions

The pilot shows that patients are positive to contributing in a research biobank, only 4% decline to sign the consentform. Our study shows additionally that, in only three months, the research biobank would contain a large volume of aliquots. From the 175 patients with different diagnosis, we calculated 5522 aliquots for biobanking. This shows that the conversion of a diagnostic biobank into a research biobank can be of great value in future research.

Clinical Chemistry PD-07

 Ribeiro, Marta ${ }^{1}$; Caseiro, Armando ${ }^{1}$; Valado, Ana ${ }^{1}$; Osório, $\mathrm{Nádia}^{1}$; Mendes, Fernandol ; Figueiredo, João ${ }^{2}$.

 Gabriel, António ${ }^{1}$Marta Ribeiro (martaperaifaribeeiroe smailicomi): Armando of Coimberro, Coimbra Health School, Biomedical Sclence Department

. Portugal, Polytechnic Institute of Coimbra, Coimbrat Health School, Complementary Science Department
Introduction

 Vitamin in is obtained throush dilet and cutaneous symhesis potentiated by the presence of utremin D and PTH .

 other hand, concentrations beetween 20 to $30 \mathrm{n} \mathrm{n} / \mathrm{m} / \mathrm{sre}$ insufficient. Concentrations between 30 to $100 \mathrm{n} / \mathrm{ml}$ are sufficient for an adult.
Ty
by calcicum plammatic concentration, in a inverse relation between IPTH and ion concenctration. We assume that concentrations betwoen 14 to $72 \mathrm{ps} / \mathrm{m} /$ of 1 PTH rere sufficient for an heasthy humans.

Aims
The following study evaluated and compared serum concentrations of $25(\mathrm{OH}) \mathrm{D}$ and IPTH in elderly people living in institutions and living in their homes (free-lling), with
Material\&Methods

Blood collection and measurement of serum

SAMPLE

25(OH)D
iPTH

Results

- The free-iliving eideriy showed higher $25(\mathrm{OH}) \mathrm{D}$ serum levels, comparing with institutionalized elderly (p-value $<0,05$). On the other hand, considering de medium values, institutionalized elders had higher IPTH concentrations than free-living eiders (p-value $=0,076$). The serum concentration of 25(OH)D was inversely correlated with IPTH ($r=-0,160$)
Calcium supplementation was correlated with higher serum levels of $25(\mathrm{OH}) \mathrm{D}(\mathrm{p}$-value $<0,05)$ and lower concentrations of IPTH (p-value $<0,05$). However
 value $<0,05$), comparing with the institutionalized group. The free-living elderly who practice three or more activities per day, had higher concentrations of $25(\mathrm{OH}) \mathrm{D}$ (p-value $<0,05$) and lower concentrations of IPTH (p-value $<0,05$), compared to the institutionalized elderly.
Outdoor activities showed also correlation with serum concentrations of both hormones (p-value $<0,05$).

Discussion and Conclusion

 the $25(O H)$. This was expectable, meaning that the group with lower concentrations of $25(\mathrm{OH}) \mathrm{O}$ presentied higher concens.
ompensate the hypovitaminosis D . However this might be a result of secondary hyperparathyroidsm.
 as well as the implementation of

PD10 The 32t World Congress of Biomedical Laboratory Science 01-05, Seplember 2016
Association of the Multiple Drug Resistance 1(MDR1) gene 3435 Polymorphisms and bladder cancer

Chen Hsiang-Lan ${ }^{* *}$. Tang Hao-Hsuan ${ }^{2 *}$, Cheng $1-\mathrm{Han}^{3}$, Teng Hsiu-Chen', Chen Chung-Chit', Chen Chih-Wei Chih Yu-Chia', Tang Kung-Sheng

Department of Medical Laboratory Science and Biotecnology, Fooyin University, Taiwain ${ }^{3}$
partment of Biomedical Science, Fooyin University, Tawain

The P-glycoprotein, a product of multiple drug resistance 1 (MDRI) gene, is a membrane efflux pump localized in epithelial cells in the small and large intestine, a part of the gastrointestinal barrier that protects cells against xenobiotics from our diet, bacterial toxins, drugs and other biologically active compounds, possibly carcinogenss.Bladder cancer is strongl associated with smoking and occupational and environmental exposures to carcinogens. Tobacco factor for this cencent we the main identifying risk factor ror this cancer, which is responsible for $40-50 \%$ population consisted of cancer cases. The study
 polvmorphisms wan identifed usist MDR1 gene polymorphisms was identififed using the polymerase
chain reaction- restriction frogment polymorphism method.We found thength MDRI genotype among controls (CC 41 dirtibution of and TT 14.7\%) was siggifictandly different from C, 44.0 among bladder cancer cases $(24.00$ respectively) ($p<0.05$).Significantly increase risk for bladder cancer was observed.These results suguect th MDRI 3435 gene might have potential as a senestic marker for bladder cancer susceptibility.

02

(15) whel

Detoxification Pathway

tructure of P-glycoprotein

\section*{METHODS RESULTS
 | Laierialsand./. |
| :---: |
| - Primer design and restriction enzyme
 - DNA extraction (EDTA blood)
 - PCR(Polymerase Chain Reaction)
 - RFLP (Restriction Fragment Length polymorphism)
 - Agarose gel eletrophoresis
 - DNA sequencing
 - Statistics assay(SPSS)

 放敖. Whole blood in EDTA tube
 Put whole blood into eppendorf tubes
 Add BD-1solution Centrifuge, Discard the
 Supernatant Add BD-2solution. Centrifuge, Discard the
 supernatant
 Add BD-3solution , incubate
 Add BD-4solution, Centrifuge, Transfer the
 supernatants to new eppendorf tubes carefully
 cher
 Add absolute ethanol, Centrifuge . Discard the
 supernatant
 Add 70 , ethanol ethanol, Centrifuge , Discard
 the supernatan
 Air-dry
 Add autoclave ddH2O. Incubate
 Spin down and store at 4 for later ues
 Pol mmerassa Chain Praacion
 DNA isolation kit
 Amplified by PCR
 Denaturation for 1 min at 94 c
 $\left.\begin{array}{l}\text { Annealing for } 1 \mathrm{~min} \text { at } 57 \mathrm{C} \\ \text { Primer extension for } 1 \mathrm{~min} \text { at } 72\end{array}\right\} 40$ cycles.
 Final extension for 10 min at 72
 Product was digested with the appropriate
 restriction enzyme
 Analyzed on a 3% agarose gel |

[^0]
imunoassay for cyclo ${ }^{8}$ Cyclosporine and ith cobas e411 analyz iro Maeda ${ }^{11}$, Yoh Hidaka ${ }^{2}$ versity Hospital, Japan

pose

nunosuppressant drugs tha isplantation therapy.
f CsA and TAC concentrati blood cells and bound to ease the analytes from the of CsA and TAC concentra nalytical performance of

Conclus We need to vel mixing time w use a new mix apparatus beca efficiency of n depends on inc shaking appar\& The analytical performances , Elecsys ${ }^{*}$ Cyck and Tacrolimu: were acceptabl

IFBLS
 Kobe Jopan

 Trace element levels in type 1 diabetes patients

Ching-Chiang Lin ${ }^{\text {a.b }}$, Guey-Ju Tsweng ${ }^{\text {, }}$, Yeou-Lih Huang ${ }^{\text {c.a. }}$
'Department of Laboratory Medicine, Fooyin University Hospital, Pingtung, Taiwan
-Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
'Department of Medical Laboratory Science and biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan ${ }^{\text {d }}$ Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan

Objective

Several trace elements are involved in insulin signal transduction and glucose metabolism. Present study aimed determine the levels of three important elements-magnesium, chromium, and zinc-as well as one oxidative stress marker-malondialdehyde (MDA)-in young type 1 diabetic patients at different periods of their growth, and to realize the relationships between trace elements, oxidative stress, and growth stages.

Methods

A total of 88 patients with type 1 diabetes mellitus in different growth stages and 76 gender- and age-matched healthy subjects were included in this study. The levels of MDA were measured through HPLC using a C-18 column. Zinc, magnesium, and chromium concentrations in serum were assessed using atomic absorption spectrophotometry.

Results

We found higher levels of blood malondialdehyde (MDA; $p<0.001$), significantly lower levels of magnesium ($p<0.001$), and no differences in zinc and chromium levels ($p=0.153$ and 0.515 , respectively) in younger type 1 diabetic subjects relative to those of control subjects. Only 3.4% (3/88) of younger diabetic subjects exhibited hypomagnesemia; similar results were obtained when comparing different subgroups: children, adolescents, and adults. We also observed no differences in the levels of the three elements between the genders and among the growth stages ($p>0.05$) of the diabetic subjects. There were no correlations between the three trace elements and HbA1C, diabetes duration, and insulin dose/BMI (all p > 0.05), but there was a significant difference between zinc levels and insulin dose/BMI ($p=0.043$) in the diabetic patients.

Chanconemeneminn levels in zine and chromium levels in tic Conclusions tod blood MDA, decreased magnesium, antrol subjects. Only $\mathbf{3 . 4 \%}$ of yable for improving We found elevared 1 diabetic subjects relative to those of consium supplementation is sultable magnesion through younger type 1 dited hypomagnesemia. Whetheress and inflammation subjects extibited and decreasing ox insulin senstivies.

Assessing the diagnostic characteristics of procalcitonin assay in patients suspected bacterial sepsis

ai. tumume

3 to Promote epsis Diagno
ng^{1}, Chen Yu-Fen ${ }^{1,2}$
Clinical Pathology, Chi dial Management Chia

Blood from the 216 patients was performed for PCT test in Advia centur CP system (Siemen) and the results of blood culture were monitored by BACTECTM Instrumented Blood Culture Systems (BD). In healthy people, plasma PCT concentrations are found to be below $0.05 \mathrm{ng} / \mathrm{mL}$. Usually, PCT concentrations exceeding $0.5 \mathrm{ng} / \mathrm{mL}$ are interpreted as abnormal values suggestive of a sepsis syndrome. PCT values in the range of 0.5 and $2 \mathrm{ng} / \mathrm{mL}$ represent a "grey" zone with uncertainty as far as the diagnosis of sepsis is concented. Therefore, the diagnostic characteristics of blood PCT in $0.1 \mathrm{ng} / \mathrm{ml}$ and $2 \mathrm{ng} / \mathrm{ml}$ to evaluate The diagnostic characteristics of PCT assay in patients suspected bacterial sepsis. he diagnostic characterstics of summarized in Table 1 and Table2, respectively. Of the 216 blood sample, positive results and negative results in blood culture were 48 specimens and 168 specimens, respectively. The cut-off value of blood PCT was set in $0.1 \mathrm{ng} / \mathrm{ml}$ according to reagent instruction. We found that the sensitivity, specificity, PPV, and NPV of PCT assay were $97.9 \%, 8.3 \%, 23.4 \%$, and 93.3%, respectively (Table 1). Furthermore, the cut-off value of blood PCT was set in $2 \mathrm{ng} / \mathrm{ml}$ as an indication for sepsis diagnosis. We found that the sensitivity, specificity, PPV, and NPV of PCT assay were $45.8 \%, 85.1 \%, 46.8 \%$, and 84.6%, respectively in Table 2. The Conclusion:

The PCT level at $0.1 \mathrm{ng} / \mathrm{mL}$ performed high sensitivity and NPV as a screening test for diagnosis of bacterial sepsis and the PCT level at $2 \mathrm{ng} / \mathrm{mL}$ performed high specificity as a diagnostic marker for bacterial sepsis. Therefore, plasma PCT is a useful marker of the inflammatory response of the human body to a non-viral infection and elevated values are highly suggestive of a bacterial infection with systemic = 黄 = 品

,

1

EFFECTS OF THE USE OF DIFFERENT COVERING ON SERUM SAMPLES FOR BILIRUBIN DETERMINATIOn]

Manila, Philippines

The effects of the use of different covering materials on serum bilirubin were decern Teri and normal samples were covered using bond, carbon, and aluminium foil. Aliquots to fluorescent lightata aprededemined distance of 2.1 meters for 3 time intervals of f-hour,, 2
 the established baseline values. Results for bothicteric and normal samples showed that joint meof total bilinbbin is not significant with $(p=0.417$ and $p=0.400$) values repecectively. Similar g he four covering material for both icteric and normal samples do not show any sigififane values respectively. Horevere, the mean bilirubin do not depend on the covering material values respectively. Moreover, he mean miilania deictic samples do not have sigififrant effect
 ration.
b, Icteric, Jaundice

Clinical
Chemistry
PD-18
$\lg \mathrm{A} / \lambda$ Plasma Cell Myeloma with 2 Light Chain Amyloidosis : A Case Report Kainite Hows, Yen-Cham Mich Ting-Chung Home, Kitrai Hums, Yen-Chum Hsichi, Tinge ho

y

D-1 0.1

Amyloidosis refers to a variety of conditions wherein amyloid proteins are abnormally deposited in organ or issues and cause harm. A mong the several forms of amyloidssis, the principal types of that in inpatient medical service are the AL amyloidosis (primary) and AA amyloidois secondary). AL Amyloidois is due to deposition of protein derived from overproduction of immunoglobulin light chain in plasma cell myeloma. Furthermore, it is a systemic disorder that can present with a variety of symptoms, including heavy proteinemia and edema, heptosplenomegaly, otherwise unexplained heart failure.

\square Eliserpot

This 78 year-old female has history of hypertension, bypertrophic obstructive cardiomyopathy and CKD stage 2 for many years. She complained she suffered from severe pain during urination, dysuria, burning urination, oliguria, general malaise, fatigue, poor appetite, leg edema for several months. Regular nephro OPD follow-up and scheduled ad mission for renal biopsy due to glomerulonephritis. Related laboratory examination data arranged by nephology and hematology \& oncology department are as follows.

- Urine routine : Mild pyurai and proteinuria [urine Pro teen $(2+)$].
Biochemistry : Serum BUN [39 mg/dL], Creatinine [0.76 $\mathrm{mg} / \mathrm{dL} \mid$, ALB $[2.3 \mathrm{mg} / \mathrm{dL}]$, Ca $[8.5 \mathrm{mg} / \mathrm{dL}]$, UPCR $[1679.8$ $\mathrm{mg} / \mathrm{g} \mid$
(Immunology : Serum IgG: $748 \mathrm{mg} / \mathrm{dL}$, IgA: $635 \mathrm{mg} / \mathrm{dL}$, Ig M: $63 \mathrm{mg} / \mathrm{dL}, \beta 2$-microglobulin $6404 \mathrm{ug} / \mathrm{L}$. Free light chain in serum: (Kappa: $18.80 \mathrm{mg} / \mathrm{L}$, lambda: 110.00 mg / L), Kappa/lambda ratio: 0.17 ($(0.26-1.65)$.
CBC : NBC $10.2 \times 10^{3} / \mathrm{LL}, \mathrm{Hb} 10.9 \mathrm{~g} / \mathrm{dL}, \mathrm{MCV} 91.4 \mathrm{fL}$, PIt $344 \times 10^{3} / \mathrm{LL}$, Band 0%, Seq 56.7%, Lym 27.9%, Mon 12.5%, Eos 1.9%, Base 0%, atypical lymphocyte 1%.

Reference R.

Serum protein electrophoresis : A major monoclonal gammaglobulin peak is present in $\beta 2$ region, and a minor monoclonal gammaglobulin peak is present in y region (Figures).

Serum protein immunoelectrophoresis : M protein, $\lg A$ lambda (Figure 2).
Kidney needle biopsy : Presence of amyloid fibrils in glomerulus. The Congo red stain highlights amyloid de position in arterial wall and glomeruli, withapple-green birefringence. Additional immunofluorescent stain show lambda light chain deposition along glomerular capillary wall. Staining for Kappa light chain is negative.
Bone marrow biopsy(IHC) : These plasma cells show monotypic for lambda light chain and are positive for ILA. Nearly no kappa light chain-positive cells are pres ant (Figure 3)

The amyloidosis ara a group of disorders in which soluble proteins aggregate and deposit extracellularly in tissue as in soluble fibrils, causing progressive organ dysfunction
 Secreated IgA are often dimeric with two immunoglobu lin monomer. To clarify two $\operatorname{Ig} A / \lambda$ found in serum immuneelectrophoresis are secreted from the same plasma cell clone in bone marrow, we treated sample with beta-mercaptoethanot (BME) which reduces the polymerized immunoglobulin and the result showed the small peak in gamma region disappeared after BME treated (Figure 4), which reveals IgA polymir are reduced to $\operatorname{Ig} A$ monomer.
 Besides, Bortezomib, melphalan, and prednisolone combination chemotherapy (VMP) was applied to this patient, and there were no paraprotein peak found in these follow-up protein electrophoresis pattern(Figure 5-7).
 - Discussion

te to Promote the Patients for Early Sepsis Diagnosis and Survival

Chen Tzu-Ling ${ }^{1}$, Chen Yu-Fen ${ }^{1,2}$, Hu Wan-Yen ${ }^{1}$, Wang Chieh-Tien ${ }^{1}$
Department of Clinical Pathology, Chi Mei Medical Center, Liouying', Taiwan Department of Medial Management Chia Nan University of Pharmacy and Science ${ }^{2}$

Introduction

Sepsis is a leading cause of illness worldwide and multifaceted host response to an infecting pathogen that may be significantly amplified by endogenous factors. The original conceptualization of sepsis as infection with at least 2 of the 4 SIRS criteria focused solely on inflammatory excess. Sepsis is now recognized to involve early activation of both before and anti-inflammatory responses. Recently, the incidence of sepsis continues to increase tendency. The patient who is immunocompromised and is under aging process has more possibility to get sepsis. Sepsis is used to define as systemic many symptoms

response syndrome (SIRS) and causes man such as fever, hypotension and leukocytosis. Furthermore, | such as fever, hypotension and |
| :--- |
| severe septic shock is in a high risk of mortality. The | clinical and research settings areve prognostic utility combined measurement to improve prognostic utility and survival. SIRS definition improve prognostic utulity and temperature $>38^{\circ} \mathrm{C}$ or <36 ${ }^{\circ} \mathrm{C}$, heart rate $>90 /$ min, reapiratory rate $>20 / \mathrm{min}$ or PaCO_{2} $<32 \mathrm{mmHg}$,WBC count $>12,000 / \mathrm{mm}^{3}$ or $<4,000 / \mathrm{mm}^{3}$ or band $>10 \%$ (Figure 1).

It has been known that lactate increases during apoptosis, but the link between lactate and sepsis is
and important and automated in vitro diagnostic bacteremia test for the management of patients with sepsis Clinical application of PCT assays have defined golden standard to a high degree. PCT biomarker for detection of sepsis and septic shock. In this study, we aimed to investigate if the combination of PCT and lactate bot
to improve the sensitivity for the diagnosis of sepsis, to improve the sensitivity fro tre diment.
achieving the purpose of early treatmen

Materials and methods
The study comprised 261 patients who had already been diagnosed with sepsis in 2015. The serum samples were tested for PCT and NaF plasma samples were tested for lactate respectively Using multivariate analysis the presence of increase lactate and PCT level.Pearson correlation statistics and binary regression statistics method was used to analyze significant changes between PCT and lactate

Result
result showed that both PCT and lactate level elevated in 261 sepsis -diagnosed patients in early-stage of disease. Descriptive Statistics Lactate Mean 2.53 : SD
270 PCT Mean 13.97 : SD 35.94 (Table 1). As Pearson 2.70, PCT Mean 13.97 : SD 35.94 (Table 1). As Pearson
correlation coefficients, PCT and Lactate positively correlation coefficients, PCT and Lactate positively
statistical correlation was found between PCT and lactate $\left.{ }_{(r=0.439, r} r^{2}=0.190\right)$ Moreover, binary regression statistics gave p values 0.01 (Table 2), indicating significicant positive association between the increase of both PCT and lactate level and sepsis. In addition, by using the
combined measurement of PCT and lactate, patient who combined measurement of PCT and lactate, patientwho
was early diagnosis of sepsis was received appropriate management timely. There were 94 of 117 patients sarviving from sepsis by early investigation and then
surving
receiving early treatment. The survival rate was 80.34%. receiving early treatment. The survival rate was 80.34%.

Conclusion

In the present study it was found that PCT level rise in early stage of sepsis accompanied with elevation of eactate level. In summary, when patient is with suspected
later sepsis.PCT and lactate - combined measurement provides a tool for early diagnosis of sepsis and beneficial to timely and App

Table 1 PCT and Lactate Level Descriptive

Statistics			
Lactate	2.5330	2.70152	Number
PCT	13.9712	35.93531	261

Mode Summary (b)

					Cumes sminite				
Notel	-	${ }^{\text {k }}$	Nim	smat	nem	$T_{r}=$		manmem	Simmanix
	029\%a	0,198	0.100	2 2137	0.108	n.t.9n	1	299	0×0

p of Phosphorus, Parathyroid Hormone Phosphatase in Hemodialysis
Iui Chen, Xian Lang Fang, Hen LI Chao, Shun Lian
Tungs' Taichung MetroHarbor Hospilal, Taiwan

Clinica Chemistry PD-21

The Relationship of Phosphorus, Parathyroid Hormone and Alkaline Phosphatase in Hemodialysis Patients

Ming Hui Chen, Xian Lang Fang, Hen Li Chao, Shun Liang Cher

Tungs' Taichung MetroHarbor Hospital, Taiwan

Preface:

Hyperphosphatemia is one of the serious complications of long-term dialysis patients. It affects the life quality of patients and causes unnecessary waste of medical resources. It is therefore needed to monitor and prevent long-term hemodialysis patients from hyperphosphatemia. When the glomerular filtration rate is reduced to $30 \mathrm{~mL} / \mathrm{min}$, hyperphosphatemia and hypocalcemia will ensue and parathyroid hormone (PTH) release will be increased, resulting in secondary hyperparathyroidism and many complications such as renal osteodystrophy with subsequent rise of alvaline phosphatase in the blood. In order to control the complications, patients should obey the NKF-K / DOOI TM specification The indicators are: calcium value: $8.4 \sim 9.5 \mathrm{mg}$ / dL : phosphorus value : $3.5 \sim 5.5 \mathrm{mg}$ / dL ; calcium and phosphorus multiplied : $<55 \mathrm{mg} 2 / \mathrm{dL} 2$; intact parathyroid hormone (intact PTH ; i-PTH) values : $150 \sim 300 \mathrm{pg} / \mathrm{mL}$ In this the relevance among serum phosphorus value, i-PTH and Alkaline-Phosphatase were analyzed to monitor and prevent hyperphosphatemia and its related complications in patients on chronic hemodialysis

Methods and Materials
Biochemical data in a total of 80 patients were collected in December 2015. The patients had been on hemodialysis for two to three times a week in the last six months or longer. The blood samples were collected before hemodialysis and then centrifuged at 3000 rpm for 5 minutes. Biochemical analyses were performed by using a Hitachi 7170 automatic and and Immulite 2000 luminescence inspection analyzer. We divided hemodialysis patients into two groups, one with phosphorus $<5.5 \mathrm{mg} / \mathrm{dL}$ and the other $\geq 5.5 \mathrm{mg} / \mathrm{dL}$. The phosphorus values of the two groups were significan

Results:
The results showed that for patients with serum phosphorus $\geq 5.5 \mathrm{mg} / \mathrm{dL}$, their average alkaline phosphatase was $126.4 \mathrm{IU} / \mathrm{L}$, with a mean i-PTH at $841.1 \mathrm{pg} / \mathrm{mL}$. In contrast, the patients with serum phosphorus $<5.5 \mathrm{mg} / \mathrm{dL}$, their alkaline phosphatase average was at $80.3 \mathrm{IU} / \mathrm{L}$ and a mean i-PTH at $107.7 \mathrm{pg} / \mathrm{mL}$. Our data showed that the phosphorus $<5.5 \mathrm{mg} / \mathrm{dL}$ group had significantly lower alkaline phosphatase and $\mathrm{i}-\mathrm{PTH}$ levels than the phosphorus $\geq 5.5 \mathrm{mg} / \mathrm{dL}$ group $(\mathrm{p}<0.05$). (Figure 1, Figure 2)

Discussion:

When the glomerular filtration rate was decreased to $30 \mathrm{ml} / \mathrm{min}$ or less, a condition of persistent hyperphosphatemia was present. Hyperphosphatemia is an important pathogenic mechanism of hyperparathyroidism. Many studies have noted a correlation between high blood phosphorus and increased mortality in dialysis patients. NKF-K / DOOI TM guidelines were proposed by National Kidney Foundation. However, whether the guidelines are applicable to the population of Taiwan remained to be confirmed. Our data showed that when the phosphorus was $<5.5 \mathrm{mg} / \mathrm{dL}$, the i-PTH value could be maintained at $<300 \mathrm{pg} / \mathrm{mL}$, and Alkaline-P was significantly lower. It indicated that when the serum phosphorus was controlled to be lower than $5.5 \mathrm{mg} / \mathrm{dL}$, the secondary hyperparathyroidism and renal osteodystrophy might be well prevented. Further surgical removal of the parathyroid gland will not be needed. Thus, the serum phosphorus level can be used as an index for monitoring the patient's condition as well as a guideline for prognosis
\square

(3)

$\begin{aligned} & \text { Clinical } \\ & \text { Chemistry } \\ & \text { PD-25 }\end{aligned}$

(3)

Quantitative analysis of free/total carnitine in plasma by Liquid Chromatography/tandem mass spectrometry assay -A method detect carnitine deficiency

(1) $=1$. IUM AND SALIVA OF OBESE PATIENTS "Min䢒

Background:

Carnitine is a key substance for transportation of longchain acyl-CoA esters across mitochondria membrane for subsequent fatty acid oxidation. Carnitine can be obtained from exogenous meat supply and endogenous synthesis in liver. Defects of carnitine may eventually result in carnitine deficiency. The conventional method for quantitative analysis of plasma free/total carnitine is carnitine acetyltransferase (CAT) spectrophotometric assay. However, the CAT method is highly affected by hemolysis and any compound in physiological fluids containing SH functional group. In addition, a larger volume of blood sample is required which makes the measurement more unfeasible. In this study, we intended to establish a liquid chromatography/tandem massspectrometry method for clinical diagnostic purpose

Methods:

By using multiple reaction mornitoring (MRM) of tandem mass analysis, the mass to charge (m / z) of the precursor and the product ions of carnitine was 162.2185 .0 . The internal standard, a stable radio-isotope D3-carnitine, was used for the calibration and basis of quantitative measurement. The m / z of D3-carnitine was 165.2/103.0.

Results:

According to the preliminary results, the within-run and between-run precisions of the method were 4.1% and 5.5% respectively. The recovery of this tandem mass assay was 94.5% and the subsequent regression analysis showed good correction with the CAT method ($\mathrm{r} 2=0.957$). The reference values of free and total carnitine in normal control were were 42.3 and $52.4 \mu \mathrm{~mol} / \mathrm{L}$, respectively, with a mean standard deviation of 42.3 ± 8.01 (Free carnitine, $n=130$); 52.4 ± 8.80 (Total carnitine, $\mathrm{n}=130$), and the samples showed a normal distribution.

Figure1 Pathway of carnitine production in the liver and its role in the mitochondria (From Flaws of a Vegan Diet -The

Figure 2 MRM chromatography of carnitine and its internal standard (carnitine-D3)

Figure 3 Calibration of the carnitine Linear regression $\mathrm{y}=0.041 \mathrm{x}-0.0941 \cdot \mathrm{R}^{2}=0.993$

Figure 4A Correlation between two methods of free carnitine 4 B Correlation between two methods of total carnitine

Conclusions:

The developed LC-MS/MS method for plasma free/total carnitine determination is specific, sensitive, validated, and accurate. The method is applicable and a great benefit particularly to the patients from pediatric department when a small volume of plasma sample is avaiable. This method is feasible and can be applied for clinical diagnostic services.

Globulin levels and hypertension are related with brachial-ankle pulse wave velocity in type 2 diabetic patients with dabetic autonomic neuropathy

Wang Yi-Mei

Department of Neurology, National Taiwan University Hospital, Yun-Lin Branch, Taiwan
Background
Dabetic autonomic ncuropathy (DAN) is a common complication of type 2 diabetes mellitus (T2DM), and represents a significant cause of candiovascutar morbality and mortality in diabetic patients.

Objective

Brachial-ankle pulse wave velocity (baPWV) is known to be a good surrogate marker of vascular damages. The goal of this study was to investigate the relationship between baPWV in T2DM with DAN
Methods
This was a cross sectional study. A total 93 T2DM paticnts (42 men and 51 women, age $46-76$ y cars) without history of cardiovascular disease
(CVD) who visited our hospital from March 2011 to (CVD) who isited our hospital from March 2011 to April 2014 were assessed. After accurate clinical examinations and biochemical evaluations, the enrolled subjects underwent automatic waveform analyzer to assess baPWV. DAN was assessed by the electrocardiograms to assess
coefficient of variation in the R-R intervals (CVR-R), the CVR-R related inderes, including CVR-R at rest (CVR-R breaths (CVR-R Results
table 1. Baseline characteristics of T2DM subjects

Characteristics	T2DM			DAN vs. no DAN p value
	$\begin{gathered} \text { Total } \\ (\mathrm{n}=93) \end{gathered}$	$\underset{(\mathrm{n}=15)}{\mathrm{DAN}}$	$\underset{\substack{\text { No } \\ \text { DAN } \\(\mathrm{n}=78)}}{ }$	
Age (years)	61.5 ± 7.8	62.0 ± 11.0	61.4 ± 7.1	0.78
Males, n (\%)	42 (45.0)	5 (33.0)	37 (47.0)	0.32
BMI ($\mathrm{kg} / \mathrm{m}^{2}$)	26.5 ± 4.0	27.1 ± 3.1	26.3 ± 4.1	0.53
Waist (cm)	91.4 ± 9.9	94.0 ± 7.0	91.0 ± 10.3	0.27
Alcohol, current/past, \mathbf{n} (\%)	27 (29.3)	3 (20.0)	24 (31.1)	0.39
Smoker, current/past, n (\%)	26 (28.0)	3 (20.0)	23 (29.5)	0.46
Regular exercise, \mathbf{n} (\%)	54 (58.1)	8 (53.3)	46 (59.0)	0.69
DM duration (years)	11.7 ± 6.9	13.3 ± 7.4	11.4 ± 6.8	0.33
Autonomic neuropathy, \boldsymbol{n} (\%)	15 (16.1)	15 (100)	0 (0)	
$C V R-R_{\text {rst }}$	2.3 ± 0.9	1.0 ± 0.3	2.5 ± 0.8	<0.001
CVR-R $\mathrm{R}_{\text {mataih }}$	3.7 ± 1.8	1.4 ± 0.5	4.1 ± 1.6	<0.001
CVR-R $\mathrm{R}_{\text {dijath }}$	1.4 ± 1.3	0.4 ± 0.3	1.6 ± 1.3	<0.001
Anti-hypoglycemic drugs, n (\%)	88 (94.6)	14 (93.3)	74 (94.9)	0.81
Anti-platelet treatment, \mathbf{n} (\%)	30 (32.0)	7 (47.0)	23 (29.0)	0.20
Use of anti-hypertensive drugs, \mathbf{n} (\%)	65 (69.9)	11 (73.3)	54 (69.2)	0.75
Use of statins, \mathbf{n} (\%)	48 (51.6)	9 (60.0)	39 (50.0)	0.48
ba PWV (m / s)	15.5 ± 2.0	16.6 ± 2.6	15.2 ± 1.8	0.01
Systolic blood pressure (SBP) (mmHg)	133 ± 15	148 ± 18	130 ± 13	< 0.001
Diastolic BP (mmHg)	81 ± 9	88 ± 11	79 ± 8	<0.001
Pulse pressure (PP) (mmHg)	54 ± 10	62 ± 11	53 ± 10	<0.001
Mean arterial pressure (MAP) (mmHg)	101 ± 12	112 ± 15	99 ± 10	<0.001
White blood cell count ($\left.10^{3} / \mathrm{Ll}\right)$	6.14 ± 1.53	6.15 ± 1.87	6.14 ± 1.48	0.98
Red blood cell count ($\left.10^{6} / \mu \mathrm{l}\right)$.	4.54 ± 0.53	4.23 ± 0.62	4.6 ± 0.49	0.01
Hemoglobin (g/di)	13.4 ± 1.5	12.7 ± 1.8	13.6 ± 1.4 40.6 ± 3	0.014
Hematocrit (\%)	40.1 ± 4.0	37.9 ± 5.1	40.6 ± 3.7	0.02
Platelet ($\left.10^{3} / \mathrm{Ll}\right)$	235 ± 65	253 ± 60	232 ± 66	0.26
Hbalc (\%)	7.6 ± 1.5	8.5 ± 2.5 169 ± 88	7.4 ± 1.2 145 ± 37	0.09
Fasting glucose (mg/dl) Creatinine (mg/dl)	$\begin{gathered} 149 \pm 4 y \\ 0.97 \pm 0.36 \end{gathered}$	1.1 ± 0.51	0.94 ± 0.33	0.13
Creatinine (mg/dl) Uric acid (mg/dl)	6.1 ± 1.4	5.9 ± 1.3	6.1 ± 1.5	0.62
AST (U/L)	26 ± 14	20 ± 4	27 ± 15	0.12
ALT (U/L)	30 ± 22	23 ± 10	31 ± 23	0.17
TG (mg/dl)	131 ± 60	154 ± 64	127 ± 59	0.11
T-CHO (mg/di)	160 ± 34	167 ± 29	159 ± 35	0.39
HDL-C (mg/di)	42 ± 11	41 ± 10	42 ± 11	0.80
LDL-C (mg/dl)	91 ± 26	99 ± 26	89 ± 26	0.16
Albumin (g/dl)	4.62 ± 0.34	4.47 ± 0.33 304 ± 0.32	4.65 ± 0.34 2.69 ± 0.37	
Globulin (g/d)	2.74 ± 0.38	3.04 ± 0.32	2.69 ± 0.37	
hs-CRP (mp/di)		0.33 ± 0.28 -0.62 ± 0.36	$\begin{array}{r} 0.20 \pm 0.25 \\ -0.93 \pm 0.46 \end{array}$	(0.0)
Log hs-CRP	$\frac{-0.88 \pm 0.46}{0.42 \pm 0.45}$	0.84 ± 0.83	0.33 ± 0.28	<0.001
$\frac{\text { D-Dimer (} \mathrm{mg} / \mathrm{L} \text {) }}{\text { Fibrinogen }(\mathrm{mg} / \mathrm{d})}$		342 ± 56	292 ± 50	ci. 001
Fibrinogen (mg/d) Urine microalbumin (mg/di)	137 ± 459	$\stackrel{426 \pm 965}{ }$	82 ± 251	,
Urine microalbumin (mg/dl) Urine creatinine (mg/di)	125 ± 75	101 ± 80	130 ± 74	0.18
Urine ulbumin/ereatinine ratio (UACR)	106 ± 264	289 ± 399	70 ± 216	He,
Log Urine albumin/creatinine ratio	1.14 ± 0.80	1.96 ± 0.77	0.99 ± 0.72	(0001

Figure 1. Measurement of baPWV.
Source from:
hutp:
luww.m
Table 2. Multiple linear regression analysis of

Parameter	T2DM with DAN		
	β	SE	p value
Age (year)	0.122	0.044	0.07
Sex (male vs. female)	7.73	2.834	0.07
MAP (per mmHg)	0.151	0.038	0.03
Hematocrit (1% increase)	-0.523	0.184	0.07
Hbalc (1% increase)	-0.405	0.374	0.36
Albumin (per g/dl)	2.507	1.754	0.25
Globulin (per g/dl)	9.195	2.687	0.04
D-Dimer (per mg/l)	9.194	0.730	0.30
Fibrinogen (per mg/d)	-0.059	0.024	0.10
\log hs-CRP	3.103	1.757	0.18
\log UACR	-1.152	0.902	0.29

Conclusion

Independently of other cardiovascular risk factors,
serum globulin levels and hypertension are serum globulin levels and hyperinsion are
associated with baPWV even in T2DM patients with
Disk DAN, factors known to increase the risk of CVD. Reference
Miyamoto M, Kotani K, Yagy H, Koibuchi H, Fujii i,
Konno K, et al. The correlation between CVR-R and Kyamok , et al. The ecorrelation between CVR-R and
carotid atherosclerosis in type 2 diabetes mellitus carotid atherosclerosis in type 2 diabetes mellitus
patitants with diabetic neuropathy. J Physiol Anthropoh
2010.29(4):149-52. patients with diabe
$2010 ; 29(4): 14-52$.
Bagherradeh A, Nejati-Afkham A, Tajallizade-Khoob Y
Shafiec A, Sharifi F, Esfahani MA, et al. Association of Shafiec A, Sharifif F, Esfahani MA, et al. Association or
cardiac autonomic neuropathy with arterial stifness

Clinical

Chemistry
PD-27
Effects of potassium in the platelets on serum levels of potassium
Change value of scrom potaseium in the case of adding the frozen platelets in whole blood
 Slizuka Hasegawn Avane Koto Yorhio Sato
Tokyo Metropolitan Bokuto Hospital

Introduction

Pseado hyperkalomia is known to occur in pationtn with
platelets during in ritrecongulation in venipuncture tubes

We have recently reported the occurrence of pseudo-
hyperkalemia in dapanese polyeythemia vera (PV)
heperkalema in dapancese polycythemia vera(
pationts:
In lite study, we analyzed the role of enythrecy tus in pseudo-hyperkalemia, and examined the effect of damaged
platelet -released potassium on serum potfassium levels. platelet released potassum on serum potassium levels,
Damased Damaged platelets are considered equivalent to plate
activated during in vitroblood congulation.
schated during in vitro blood coagulation. diagram of the measurement method -
St

Materials and Methods
Platelet concentrates (PCs, $n=8$) were obtained from Japanese Red Cross Society, and stored at our hospital for a maximum of 4 days (undamaged platelets) Plasma potassium levels in the PC samples were measured by EAOTU Electroiyte Analyyer A A/ Co .
Ltd.). The PCs were then frozen for 8 hours at $-20^{\circ} \mathrm{C}$ to yield damaged platelets (Fig. 1), and their plasma potassium levels were measured. Whole blood was obtained from normal volunteers after they provided informed consents.
In one set of experiments, damaged platelets were exogenously added to whole blood at varying doses
In one set of experiments, damaged platelets were exogenously added to whole blood at varying doses (platelet numbers determined by
Coulter ACT), and serum potassium levels were measured for these whole blood samples (Fig. 2, 4, and 6). Addition of a similar volume
 whole blood, and serum potassium levels were measured (Fig. 3, 5, and 7). . To examine the effect of coagulation factors present in the plasma, the red blood cel
numbers of damaged or undamaged platelets were added to them (Fig. 8 and 10)

Comparison of fetal hemoglobin levels in infants by days after conception and days after birth．

Yuki Watanabe ${ }^{1}$ ，Kayo Osawa²，Itsuko Sato ${ }^{1}$ ，Ruri Kono ${ }^{1}$ ， Ikuyo Hayakawa ${ }^{1}$ ，Nobuhide Hayashi ${ }^{1}$ ，Ichiro Morioka ${ }^{3}$ ，Jun Saegusa 1）Department of Clinical Laboratory，Kobe University Hospital
2）Department of niephivsies，Kobe university Graduate Schoot of Heath Sciences 3）Department of Pediatrics，Kobe University Graduate School of Medicine

Background

ting blood high sensitive troponin s in patients without cardiac diseas （io Sakai ${ }^{1}$ ，Takashi Wada ${ }^{11,2)}$ azawa University Hospital，Kanazawa，Japan

Results

Discussion

Fetal hemoglobin（ HbF ）is predominant in a fetal erythrocyte and structurally different from adult hemoglobin（ HbA ）．The binding capacity of HbF is highly affinity for oxygen than HbA ．
HbF to HbA switching is necessary to facilitate trans－ placental oxygen exchange in the blood．The switching was noted to take place after birth，but the mechanism is unclear．But， HbF is known to be a high level in the preterm infants．
HbF is known to be a high level in the preterm infants．It has been reported that HbF showed a high level in a patients with bronchopulmonary dysplasia and might be a prospective marker for some infants at risk for sudden infant death syndrome（SIDS）．
However，there is no report focusing on the change of HbF with increase in gestational age（GA）．

Aim

This study was aimed to evaluate whether there is an association between the HbF levels and days after birth，or days after conception according to GA．

Materials and Methods

［Subjects］
The blood samples（ $n=1,095$ ）were obtained from 407 infant patients at birth to 364 days excluding 18 patients with hereditary disease or post－transfusion．
【Measuring instrument】
The HbF levels were measured based on high－performance liquid chromatography using by ADAMS A1c HA－8180T （ARKRAY，Inc）．

【Study method】

The samples divided into 2 groups as follows：preterm infants group（ <37 weeks＇GA，$n=491$ ）and term infants group（ ≥ 37 weeks＇GA，$n=604$ ）．We compared the HbF levels between 2 groups by days after birth（ 6 categories） or days after conception（ 6 categories）．
【Statistical analysis】
To compare between preterm and term infants groups， statistical analysis was performed using the nonparametric Mann－Whitney U－test

This study was approved by the ethics committee of Kobe University Graduate School of Medicine．

（A）and days after conception（B）
Table 1．The comparison of HbF in days after birth

$>$ In days after birth，the HbF levels of preterm infants group were higher than those of term infants group （Figure 1A）．The medians of HbF levels between 2 groups were statistically significant different from preterm and term infants in 6 categories of days after birth（Table 1）
On the other hand，the distribution of HbF was matched between preterm and term infants groups in were a difference in a category（under 9 mor conception，the medians of HbF levels between 2 groups other categories（Table 2）．
－Previous studies reported that HbF levels of the preterm infants were higher than those of term infants In this study，we revealed that the HbF levels were regulated with days after conception rather than days． aur birth r
specific reference values of HbF ．

Clinical Chemistry PD-32

Weekly variation of free testosterone and growth hormone levels in men and women

Chie Hirayama-Negishi', Kazumasa Isobe², Keiko Inoue³, Michikuni Isilima', Hitoshi Oikawa', Toru Nanmoku', Yasushi Kawakami
d: Division of Laboratory, University of Thukuba Hospital, Japan (e-mail: chie-tuk(i)umin.ac.jp) Deparment of Laboratory Medicine, University of Tsukuba, Japa Taukuba Medical Laboratory of Education and Research) Japan

Introduction

A variety of factors, such as sex, age, diumal variation, exercise and diet, influence laboratory determinations of hormones. Growth hormone (GH) and testosterone (T) are known to be age-dependent and responsible for sex differences. Howeve little is known about the weekly variation of free testosterone (F1) and GH .

Aims/Objectives

The purpose of this study was to assess weekhly and seasonal variation of hormones and other factors such as exercise, or zin supplements, on influencing FT and GH levels.

Methods

Participants:

Participants: \quad volunteers (4 men and 5 women, aged 20-5 years) who had no physical signs of disease and were not taking any medications.

Methods:

A $5-\mathrm{mL}$ blood sample was obtained at 5 pm once per week for month from each participant to measure the levels of FT and GH Luteinizing hormone (LH), folicle stimulating hormone (F2) and progesterone (PG) were also measured to determine ovulatory stages. We also measured insulin-like growth factor-1 (IGF-1) to clarify the GH action. IGF-1 is a basic polypeptide. 75% of serum IGF-1 is secreted by the liver upon GH stimulation, so the amount of IGF-1 secretion reflects the total secretion of GH. IGF-1 also mediates the anabolic properties of GH.
A zinc supplement ($15 \mathrm{mg} /$ day) was administered for 7 days. Muscle training was performed at 70% maximal strength as follows: 1 set, 8 repetitions, with 2 different types of muscular workouts for 3 sets total.

Statistics:
The Pearson moment correlation coefficient was used to
determine correlations among the quantitative variables.

Result 1

Fig. 1 shows the weekly changes of hormone levels in female participants. It is well known that some hormones, such as LH FSH, E2, and PG, have ovarian cycles. GH and FT levels also showed weekly changes. At the pre-ovulatory and poly
stages, the levels of T and GH increased respectively.

Table 1 shows that GH levels were significantly correlated with FT levels and total testosterone (TT) levels were significantly correlated w LH may regulate release of these hormones

Result 2

Fig. 2 shows the weekly changes of hormone levels in male participants. In men, a weekly variation of T and GH were observed, even though the increase is smaller than that in women
I. Il lillillill

Table 2 shows that LH levels were significantly correlated with Table 2 shows that LH levels were signicicanic with FT levels.

Result 3

Table 3 shows seasonal changes in FT levels in 3 persons. FI levels might be high in winter.

Table 3. Seasonal changes in free testosterone levels in 3 persons				ges in free
		M	Ap	may
Iamm		${ }^{1}$		
min				$\xrightarrow{3 .}$
\%		5		

Result 4

Table 4 shows the effect of the zinc supplement intake on the hormone levels in men. Seven days intake of zinc supplement remarkably increased the levels of LH, TT and FT levels.

Result 5
Table 5 shows the effect of muscle training on GH and FT levels
Table 5 shows the effect of muscle training the first week FT levels
over 1 year in male participants. After the maximally increased and was maintained over a year

Conclusion
GH and T levels changed weekly, and FT levels have seasonal variations. Zinc supplementation and exercise increased the tevels of T. In order to address pre-analytical problems, fut

Development of equation to calculate true kalium levels in hemolyzed blood samples.
Noritaka HANDA" Kesae HATAGUCHI" Emi YAGASAKI Youki NAKAJIMA ${ }^{1{ }^{1}}$ Waki KANAI ${ }^{1 \prime}$ Toshiyuki OZAWA ${ }^{11}$ 1) Department of Clinical Laboratory, Saku Central Hospital Advanced Care Center

Background

Hemolysis increases serum kalium (K) levels. Determination of K levels using nonhemolyzed blood samples is recommended, but sometimes blood collection is difficult. Our purpose is to develop a K-compensating equation to estimate the true K levels using hemolyzed blood samples.

Materials

Heparinized blood samples from fifty patients were used.
K levels and hemolysis index were determined using BM6050 (JEOL)
Hemolysis index is levels of hemolysis. It is distinctive value of BM series.

Methods

I . Manufacture of the hemolysis reproduction
reagent.

1. Washed the heparinized blood with saline
$(0.9 \% \mathrm{NaCl})$ three times and diluted with
saline.
Adjusted hemoglobin (Hb) levels to 2,500
$\mathrm{mg} / \mathrm{dL}$.
. Hemolyzed by freezing at $-30^{\circ} \mathrm{C}$.
2. This solution was referred to as the
hemolysis reproduction reagent.
II. Development of K-compensating equation. 1. Mixed hemolysis reproduction reagent with saline and pooled serum.
3. Adjusted Hb levels to $0,100,200,300,400$ and $500 \mathrm{mg} / \mathrm{dL}$ (table1).
4. Determined K levels and hemolysis index.

Table 1 . Mix rate of hemolysis reproduction reagent, saline and
$\frac{\text { pooled serum }}{\mathrm{Hb} \text { levels (} \mathrm{mg} / \mathrm{dL} \text {) }}$

| Hb levels $(\mathrm{mg} / \mathrm{dL})$ | 0 | 100 | 200 | 300 | 400 | 500 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Hemolysis reproductio
reagent ($\mathrm{\mu L}$)
Saline ($\mu \mathrm{L}$)

Pooled serum ($\mathrm{\mu L}$)	200	200	200	200	200	200

III. Verification test of the accuracy of the equation.

1. Serum samples from forty patients whose blood was collected twice because the first sample was hemolyzed were used to verify the accuracy of the equation.
Compare K levels of non-hemolyzed samples with compensated K levels of hemolyzed samples.

Results

1. Correlation between hemolysis index and Hb levels.
We observed good correlation between hemolysis index (x) and Hb levels (y): $y=39.487 x-1.6325, r=0.99$
2. Correlation between hemolysis index and increases in K levels.
Correlation between hemolysis index (x) and increases in K levels (y) is shown as equation 1: $y=0.125 x+0.0027$ (Fig. 1).
3. Correlation between hemolysis index and increase rate of K levels.
and increase rate of K levels. $\mathrm{Correlation} \mathrm{between} \mathrm{hemolysis} \mathrm{index} \mathrm{(} \mathrm{x}$) and increase rate (y) is shown as equation 2: increase rate (y) is shown as
$y=3.623 x+0.0767$ (Fig. 2).

Discussion

We found a correlation between the hemolysis index and increases in K levels. Using equation 3, compensated K levels of equation 3 , comples are not useful because hemolyzed samples are not equation 4 ,
differences are large. Using equen differences are smaller than using equation 3 . Equation 4 is useful to estimate of true K Equation 4 is usedr that the one of the factor
levels. We consider levels. We consice is release of K from muscles and cells.

Conclusion

We developed K -compensating equation We developed Kcompensatixg equati). $\mathrm{y}=\mathrm{A} \times 1$ we use this equation, we can compensate K If we use this equation, the K levels in
levels and estimate the levels and estimate the samples.
hemolyzed blood same
hemolyzed blood samples.
We wish this study contribute to decrease of We wish this study contribute to decrease re-collection of blood s

- $A^{-1} A-1$

Clinical Chemistry

Influence of In Vitro Hemolysis on 80 Different Laboratory Tests

Yasuhiro Yanagisawa' Kazumasa Isobe², Michikuni Ishijima ${ }^{3}$, Toru Nanmoku ${ }^{3}$ Takayuki Yamamoto', Etsu Suzuki1 Yasushi Kawakami²

1. Tsukuba Medical Laboratory of Education and Research Tsukuba il aboratory LLP, 2. Department of Laboratory Medicine. Faculty of Medicine, University of
3Diviston of L Laboratory, University of Taukulta Hospital. Tsukuta, Japan

Introduction

nalytic problem in laboratory medicine it infuences many laboratory tests in many ways. The purpose of this study was to assess the quantitative effects of hemelysis on 80 reutine different atboratory tests Hospital laboratones otten use basic techniques of wients. Althougl these tests have been developed and improved to perform rapid and sensitive assays, hemolysis has been a common issue for laboratory test accuracy. Most causes of in vitro hemolysis are related to specimen collections, difficult collections unsecure hine connections, as weir as improper tube mixing ach
the mechanical processing of blood. the mechanical processing of biood
Hemolysis is qualitatively evaluated
free plasma hemoglobin concentration. In many cases it is difficult to recollect the samples, since hemolysis is found after analysis of the samples.
In this study, we assessed the quantitiative effects of in vitro hemolysis on 80
biochemical and immunochemical tests.

Methods

We counted hemolysis samples obtained in Tsukuba University Hospital for 3 months (from January th to March 3 tht, 2015). The hemolysis was calculated and
classified automatically into 5 degrees of hemolysis, none, $1+, 2+, 3+, 4+$, based o Hb absorption.
Hemolysed samples
Hemolysed samples
50μ of concentrated hemolysared as follows: 450μ I serum or plasma mixed with $50 \mu /$ of concentrated hemotysate to give hemmogiobin concentrations of 90 to 1400
mg d d. Hemolysate was obtained by subjecting a plasma red blood cell pellet to one freezing-thawing cycle. The degree of hemolysis was quantified by measuring the hemoglobin absorbance. Hemolysis values were expressed in g / L of
hemoglobin and referred to the hemoglobin concentrations. Then, 80 differen hemoglobin and AlA 2000 , Cobas 6000 , and L Lumipulus $G 1200$ for other tests.

Results 1

vitro hemolysis frequency

We counted hemolysis samples obtained in Tsukuba University Hospital for 3
months (from January 1st to March 31st, 2015). As shown in Table 1 , hemolysis occurred in 8.6% of all the specimens, 6.2% of outpatients and 12.4% of inpatient .
The frequency was high in the pediatric and emergency departments. The The frequency was high in the pediatric and emergency depar
frequency was high in ages under 16 years or over 90 years.

Results 2

Quantitative effects on the laboratory tests
Ammong the 80 aboratory tests we examined, exactly 11 test levels increased and 7 test levels decreased due to hemolysis as described below. Levels of K,
LD. TTT and ZTT increased proportionally: levels of Fe and HA increased exponentially, increase of LIP levels declined at a higher level of hemolysis
Table 2 A summarizes the serum electrolyte values. Among 9 electrolytes tests, potassium and iron were extremely increased by hemolysis as previously well
reported. Inorganic phosphate also moderately increased. The increases of K and IP were additive and proportional, whereas the increase of Fe was synergetic and exponential. The estimated increases of K and $/ \mathrm{P}$ against 0.1 g H o were 0.248
$\mathrm{mEq} / \mathrm{L}$ and $0.117 \mathrm{mEq} / \mathrm{L}$ respectively,
On the other hand sodium and chloride were slightly decreased by hemolysis at On the other hand, sodium and chloride were slighty decreased by hemolysis at
Hb 540 ma/dL ($3+$) seeming to show the volume dilution effect of hemolysis on $\mathrm{Hb} 540 \mathrm{mgldL}(3+)$.
these electrolyles.
Table 2 B summarizes the serum biochemical substance values. Among 27 tests, The levels of aspertate aminotransferase, lactate dehydrogenase, hyaluronic acid
and TIT were extremely increased by hemolysis. Lipase. TBA, and ZTT levels and TIT were extremely increased by hemolysis. Lipase. TBA, and ZTT levels
were also moderately increased. On the other hand, total blifubin, glycoalbumin and 1.5 AG levels were decreased by hemolysis.
The increases in ASP, LD, TT, ZTI and hyaluronic acid levels were additive and
proportional, whereas the increase of LIP decined at a higher level of hemolysis proportional, whereas the increase of LP declined at a higher level of hemolysis.
The estimated increases of ASP. LD. TI . 11 , and thyaluronic acid againet 0 .
 itmmunnchemient tests
Table 2C sumaine
Table 2C summarizes the senum immunochemical substance values. Among 12
tests, no consitiuent level was changed by hemolysis

Tumbor mankers, KL. 6 and TNT ansays
Table 2 D summarizes the serum tumor markers and Troponin T values. Among 15 tests, neuronspoific enolase, NSE extremely increased by
otherthands, Troponin T value was decreased by hemolysis.
Indocine assiys Endocrine assays
Table 2E summarizes the endocrine tests values. Amon
BNP levels were remarkably decreased by hemolysis.

Discussion

emolysis is common in blood specimens: in this study 8.6% of all specimens yielded hemolysis. Even though the frequency of hemolysis is highly variable
among institutions, our data seems much higher than other reports, sugaesting that criteria for hemolysis vary
We examined in vitro hemolysis's quantitative effect on 80 laboratory tests that are outinely done in the laboratory. At level 2 hemo
and 7 test levels were decreased by hemolysis.
First, hemolysis can falsely increase blood constituents, such as K. AST, LD, Fe,
and NSE, by cellular release because of their high cont and NSE, by cellular release because of their high content in red blood
cells. Second. Hb released by hemolysis can falsely increase colorimetric ellis Second. HD released by hemolysis can falsely increase colorimetric results
for substances such as ΠT, ZTT and hyarulonic acld measured by turbidity and falsely decrease by inhibiting biochemical reactions substances such as TBIL, GA 1.5AG, TNT and MMP3 Third, protease reloased by hemolysis has effocts on
endocrine tests such as BNP ACTH and IRIIf a reliable correction factor existed endocrine tests such as BNP. ACTH and IR1. If a reliable correction
for hemolyzed specimens, we could provide accurate test results. for hemolyzed specimens, we could provide accurate test results.
Because hemolysis influences many laboratory tests in many ways, we should know the extent of the infuence of hemolysis and report the test results with more proper comments about hemolysis.
reducing the hemolysis rate, by instigating more precise and detailed test result reducing the hemolysis rate, by instigating more precise and detailed test
and by taising awareness of the extensive influence of in vitro hemolysis

red blood cells in the erkalemia

method

 (Clinical settings) Serum and plasma potassium measured in patients with myeloproifierative nec(MPN, $\mathrm{N}=23$) or non hematological disease (NHD (MPN, $N=2$) or non 2013 to 2015.
[Method]

1. We compared the differences of serum, plasm potassium ($\Delta K=$ serum potassium- plasma potassi
between the MPN and NHD. between the MPN and NHB 2. We examined the relationship of the numbers
blood cell (RBC) and white blood cell (WBC), plat blood cell (RBC) and white bloog cell (wBC), plat
the serum potassium levelin the blood with high the serum polassur hematocrit and the ΔK.

phlebotomized blood (Fig. 1).
 fulifvoiumes samples and 1 mL samples of blood were placed
 samples of blood were placed in ivariety of venipuncture tubes avanety or venipunctur tobesed (Fig. .2). The VI top was removed to release the vacuum Blood to release the vacturn Bloos was dispensed with a dropper. Potassium and lactate Potassiumtranache (LDH) in dehydrogenas denyrutoted blood were also measured simuta
 Results 3

 here s a posibuty to inctesie deper mannef in particuixc, corv

Clinical Chemistry
PD-36

The effect of water quality degradation for automatic analyzer
(igeo Sueyoshi1) Masashi Amemiya ${ }^{2}$) Yoshihito Ito ${ }^{3}$) Yasuhiro Yoshikawa ${ }^{4)}$ Masanori Kanazawa 1) Chiba Cancer Center $\begin{array}{ll}\text { 4) Kameda Medical Center } & \text { 2) Chiba Child } \\ \text { 5) Merck Ltd }\end{array}$

Introduction

We have observed that the results of 7 items out of 31 are affected if unpurified municipal water is used to feed automatic analyzers. Ca and Mg were the most affected items. We investigate the data shift and wide dispersion mechanism of 2 electrolytes, it proved water mixed into the reaction cuvette through the
reagent pipette

Methods

1) The impact of different water qualities on the
biochemistry analysis.

2) The impact of different water qualities by Ca and Mg reagents.

3) The impact of different water qualities on the biochemistry analysis by reagents dummy volume.

4) Investigation by the contamination on the biochemistry analysis.

Measured sample and reagent: Orange σ (ab:
Automatic analyer: : Hitachil P7700 P module

\qquad
The solutionsweren the opertion
a) sampleiniection \rightarrow reagent iniection \rightarrow mixing \rightarrow stop
(rover) $\rightarrow 5$

Results and Discussions

1) The impact of different water qualities on the
biochemistry analysis.

Results and Discussions
2) The impact of different water qualities by Ca and Mg

The degradation of water quality
= The increase of Ca and
3) The impact of different water qualities on the biochemistry analysis by reagents dummy volume.

Reagent injection : effect Investigation by the co
biochemistry analysis.

Reagent injection \rightarrow dilution water mixed into the reaction cuvette through the reagent pipette.

Conclusion

Conclusion Cold ham a condurtivits below 0.1 defined ty the CLSS, ehould have a comia nommend lese pS/cm. nome analymer manufacturn an maximum of
 0.082 me /d. Ca Asauming atarai anctive cavette In Maximum 46 Ca is added into is reactimn curne. io in in the conclusion. water quality is an impertant pana wow high mesarumment of electroly tos

Introduction

Purpose

Results

variance (CV) of within run rop

(3) The inearit of up to 3.007 .5 ULL

Free bilinbien aforide positive error in CKMB. Chyie and ascortbic acid afford no effoots on all temm
(5) Correlation coefficient if) between contrastive rangents is 0.910-0.999.

Discussion and conclusion
. Sencentrations of sample Becouss of using low concontrations sample, the ratio of arrors is large. All of the detailed data is shown in the lower right of thi poster.
poster.
Probe cleaning system is considered to provent carry-over so we can measure immune and biochemistry items at the same time
Thus, cobas8ouon may r rodece reporting time by seleoting shortest measure time of immune
From the results of this studies, we evaluate oobassoon is useful for routine examination.

Basic performance of cobas 8000

1

Effect of carry-over

Data of study

Materials and methods

(2) Atsurnory Wo mesant

Q Effect of wetrix

Clinical Chemistry PD-40

Evaluation of Free and Total Prostate-specific Antigen Assay on the AIA-CL2400 Analyzer

Mika Iwal ${ }^{1}$ Kiyomi Nakajima ${ }^{1}$ Keita Kamiyama ${ }^{1}$ Sakie Fujili ${ }^{1}$ Tetsuo Machida', Kazuto Itol, Masami Murakamb'
'Department of Clinical Laboratory, Gunma University Hospital
${ }^{\prime}$ Department of Urology, Gunma University Graduate School of Medicine
Department of Clinikal Laboratory Medidine, Gunma University Graduate School of Medicine

Introduction

Prostate-specific antigen (PSA) is a protein that is produced from epithelium of prostate gland and is widely used as a marker of prostate cancer. We evaluated the performance of the newly developed free and total PSA reagents based on chemiluminescence enzyme immunoassay (CLEIA)

Methods

Both free and total PSA were measured with a two-step immunoassay an the fully automated chemiluminescance mayed control samples and residual serum samples after routine testing. Correlation studies were performed with ST AIA.PACK free PSA and ST AIA-PACK PSA II on the AIA-2000 analyzer (TOSOH Corporation), respectively.

and Analyze		
	AIA-CL2400	AlA 2000
Analyzer	AIA-CL2400	AIA-2000
Prinoiple	CLEIA	FEIA
sample volume	10 LL	$20 \mu \mathrm{~L}$
Reporting time	15 min .	20 min .
Measurement range $(\mathrm{ng} / \mathrm{mL})$	0.003~100	$0.01 \sim 100$

Results

Both free and total PSA assays showed good performance in imprecision, dilution innearity, interierence and corvelation CV20\% of the CLEIA PSA was $0.0013 \mathrm{ng} / \mathrm{mL}$.
3. As a result of having examined the correlation of the free/total PSA ratio
$10 \mathrm{ng} / \mathrm{mL}$.

Precision profile

We measured the samples which had the ratio of complex PSA
 fromfirmed to have an adequate equimolar-response to report precise PSA concentration.

Recover rate

 atrolingipa
Thetreter phe
4. A comparison of free/total PSA ratio was performed betwee both assays to evaluate their ability to detect prostate cancer in 34 patients with prostate cancer and of 4 to $10 \mathrm{ng} / \mathrm{mL}$. A 85% sensitivity, free/total PSA ratio obtained by CLEIA showed greater specificity for prostate cancer as compared with that obtained by AIA-200

	AIA		AAA-CL	
sensitivity	specificity	FT	specificity	FT
100%	0%	47.9%	0%	48.6%
95%	5%	32.2%	7%	33.2%
90%	5%	29.9%	15%	28.3%
85%	20%	23.5%	38%	23.3%
80%	21%	22.8%	41%	22.6%
75%	48%	19.3%	48%	21.3%
70%	49%	18.9%	51%	20.6%
65%	54%	17.4%	51%	20.5%
60%	56%	16.8%	56%	18.4%

Conclusions

The newly developed free and total PSA reagents based on CLEIA The newiy developed free and clinical specificity of AIA-CL2400 was greater than that of A1A-2000. In addition, the new assays on the AIA-CL2400 are able to report in 15 minues,
and need less volume of specimens. Thus, these assays are useful and need less volume of specimens. Thus,
for diagnosis of prostate cancer, monitoring the course of treatmen for diagnosis of prostate cancer, menitoring the course and detection of prostate cancer reoccurrence in clinical practice.
 -
results in laboratory environment and results in humidity.

- The device could keep appropriate envir by using warm or cold agents, and the pc point-of-care analyzer were conditions. Fc pent lower value was obtained by i -STAT1 there was no difference between in the , and in the room.
- Based on this report, we're trying to us
system at the outside of a building.
acknowledgments

Clinical Chemistry PD-42

The influence of Hydroxyurea on the Measurement for Clucone by glucose oxidase hydrogen peroxide electrode method.

Yukio Kume" ${ }^{\prime \prime}$, Megumi Takahnahi", Yoshikazu One" ${ }^{\prime \prime}$, Masahiro dyona " ${ }^{\text {" }}$ Sigee Okubo' ${ }^{\prime \prime}$, Makoto Kurano ${ }^{\text {1.2. }}$, Yutaka Yatomi ${ }^{1.10}$

1) Department of Climical Latoratary Modicine, The University of Thisyo
ii) Department of Climical Laboratery Mediene, Graduate Belhool of Medicine. The Univernity of Thkyo

Background: Hydroxyure (HU) is one of the common clinical medicines for the treatment of essential thrombocythaemia (ET). It is well known that some reagents, such as ascorbic acid, interfere with laboratory testing, however the interference of HU with laboratory testing is not common. We have experienced a case of a possible positive interference of HU with glucose oxidase (GOD) hydrogen peroxide electrode reduction method. Therefore, in this study, we investigated whether HU interferes this method.
Methods: We measured plasma glucose with two glucose assay; GOD immobilized enzyme membrane/ hydrogen peroxide reduction electrode method (GOD electrode reduction method, chemical reagents and ADAMS Glucose GA-1171 form ARKRAY Inc, Kyoto, Japan) and Hexokinase Assay method (HK-method, Quick Auto Neo GLUHK from SHINO-TEST CORPORATION , Kanagawa, Japan).
(1) We measured glucose concentrations of the plasma samples obtained from 4 subjects taking HU with these methods.
(2) We investigated the interference of HU with glucose values determined with each method by adding HU to glucose standard solution. (fig 1.)
$\begin{aligned} & \text { Glucose oxidase hydrogen } \\ & \text { peroxide electrode method }\end{aligned}-\left[\begin{array}{l}\text { Reduction method } \\ \text { (The rutin method) } \\ \text { Oxygen decrease metho }\end{array}\right.$

Fig.1. Classification of glucose assays
(3) We determined how much HU passed through the GOD immobilized enzyme membrane with newly developed HPLC-UV detection assay.

Results:

(1) the positive deviation of glucose values determined with GOD electrode reduction method from those determined with HK-method was 5 ~ 8\%. (table 1.)

	The rution method ($\mathrm{mg} / \mathrm{dLL}$)			Emergency test (mg/du)
	Electroda Roduction mothod			Hexokinase assay
	Analyer Noi.	Analyer №z.	Analyer No3.	
Case 1	$88(+5)$	$99(+16)$	85 (+2)	83
	95 (+2)	$100(+7)$	$92(+1)$	93
Csees	243 (+7)	$249(+13)$	238 (+2)	236
${ }_{\text {1.schar }}$ crear	192 (+3)	$195(+6)$	$189(0)$	189
${ }^{16 p / d a v}$	$192(+3)$			

Correlation in the normal plasma $y=1.014 x \mathrm{x}-0.312 \mathrm{r}=0.998$
.
 determined
(2) The addition of HU did not affect the glucose values determined with HK-method, while the values determ elevated those determined with GOD electrode reduction method.(table 2,3 .)

- When pationts take 800 mp/m² q dhr of hydroxyuren, the highonet blood

$\begin{aligned} & \text { Hydroxyures } \\ & \text { concentation (Mas/mL) } \end{aligned}$	Hiectrode Redurtion $\begin{aligned} & \text { method } \\ & \text { Glucose concentration }\end{aligned}$ (ms/dt)	$\begin{gathered} \text { Blas } \\ \left(m_{3} / \mathrm{dt}\right) \end{gathered}$
0	149	.
10	150	1
20	151	2
30	153	4
40	154	5
50	155	6
60	156	7
70	158	-
80	159	10
90	160	11
100	161	12

Table 3. Influence of hydroxyurea on the GOD electrode reduction method at low concentration

* When patients take 1000 mg of hydroxyurea, the blood after the administration.
(3) When we challenged the membrane with 10 $\mathrm{mg} / \mathrm{ml} \mathrm{HU}$ solution, we observed that 60% of the HU had passed through the membrane
Conclusions: The medication with HU influences the glucose concentrations determined with GOD electrode reduction-method, but not those determined with HK-method. When we measured glucose with GOD electrode reduction method, we should consider the interference of HU with glucose concentration. (fig 2.)

Fig. 2. The mechanism that thy

Usefulness of eGFRecre corrected by mu creatinine in the

ry
4Takahashi Youhei ${ }^{\text {a }}$, Ukida Minoru ${ }^{\text {b }}$ Departiment of Climical Laboratory, National Orceanization for Aute Department of Climcal Caboratary, National Department of Central Clinical Laboratory, Okayama Saiscikai O Creatinine, Cystatin-C, eGFR, muscle-mass-volume,

18 18-3-

Clinical Chemistry

Usefulness of eGFRere corrected by muscle-mass-volume creatinine in the bedridden patients

Takahashi Youhei a, Ukida Minoru b
"Department of Clinical Latoratory, National Organization for Automotive Salfety \& Victim's Aid Okayama Medi-Care Center, Okayamu, Japan
partment of Central Clinical Laboratory, Okayama Saiseckai General Hospital
Key words: Creatinine, Cystatin-C, eGFR, muscle-mass-volume, Correction method [buckground]
 reduction of the evereise or the activity, It is hard to use estimated glomerular tiltration rate (ecirR) using CRE
(eCiF Reve) for the craduation of renal finction in such condion So. Custatain-C valuc C Cosec) which is not atfececed by mv has been used usaully in the suspicious casce of the renal impaiment. The aim of this study is to innestigate the usefluness of cGFR corrected by mv CRE (cifRnvere) comprued to cifR usin! [subjects and methods]
The subjects were 42 patients of parsisisent regectative state adauited to our hospital
CRE and Css-C Assay:
CRE: Ennymatic method
Cys.C: L.atex turbidimetrici immunossasy *
-standardized according to the IRMM commutaiity study
(manutactured by LSI Medience CO.,ITD)
 Calculation of "CRE Corrected By mv" We measured mv of cach patient using body composition standard mv (standard mv adiusted by height and sev, mon 80.2% of ideal body weipht, female $=72.7 \%$ of ideal bod
weight). The CRE conceted by mv was calculated by CRE ant the correction value (CRE corrected by $\mathrm{mv}=\mathrm{CRE} \times$ (standart
mv measurd dvv$)$ (Estimation of GFR
eGFR was calculated by method of Japanese Societ Mechod of Japaneses Society Pediatric Nephrology

We investigated that evaluation of calculated result by regression equation and correlation.

[RESULTS]

sults of the patients. The average my of the calculated rewis of the patients. The average mv of the patient was
$32.8 \pm 6.4 \mathrm{~kg}$ compared with the standard mv of $44.6 \pm 8.7 \mathrm{~kg}$. Th average correction value was 1.37 ± 0.12. Each of eGFR value were eGrRcys $=94.0 \pm 23.5$, eGFRcre $=139.5 \pm 38.5$ an
eGFRmvcre $=98.8 \pm 22.9$. Figure 1 shows the distribution of clinical data and reference range. In the Cys-C and the CRF corrected by mv, the majority of the patients were within the
reference arang.. But, in the CRE, it showed low value trend than the reference range. Figure 2 shows the each of distribution of eGFR. The eGFRcre value was significantly higher than
eGFReys value ($\mathrm{p}=0.000$). There was no significant difference eGFReys value ($\mathrm{p}=0,000$). There was no significant difference
between eGFRRvere value and eGFReys value ($\mathrm{p}=0.242$. The between eGFRmvere value and eGFRcys value ($\mathrm{p}=0.242$). The
regression equation of cGFRere and efir reys was $y=1.63 \mathrm{x}-14.2$. and the correlation coefficient was $r=0.268$. The regression
equation of eGFRmvcre and eGFReys was $y=0.97 \mathrm{x}+72$, and the correlation coefficient was r-0.367 (figure 3). The results of test
of difference between two correlation coeffieient were no of difference becween two correlation coefficient were no
significant difference $(p-0.059)$. table 1 , patient baseline, clinical data, calculated results

	21	15	42
Mreareatan	122117.5	424(25.7)	42320.5)
Heiblicm	$188.578)$	1527(7.3)	$1628(107)$
Wepret, ibe	6337,0	$46.3788)$	50847.8)
вм1.kem'	187(1.8)	$108(27)$	$191(22)$
	38.162	$258(33)$	${ }^{\text {32880.4 }}$
Smaders m , ikg	499153	$35.14 .5)$	44.8887)
menas vaterom	13890.117	$13 \times 10.12)$	1.370 12)
	$0.88(0.12)$	$089(027)$	0.89 (0.19)
	064140	-0.0.0.82	0.530 .90
Creatiocer my/.t.	05560137	$0100(009)$	0.470. 149
	$0.750 .18)$	0.520.10)	0.67(0.7)
Cusitiom metermeremer	0.051 .07	0.460 .79	
cornow mimitisjum		246899	240235
	1372348)	$11301(54)$	$13953385)$
	4	renose 9	968029

[DISCUSSION]

Recently, several papers reported that eGFRcre was higher
han eGFReys in elderly diminish body mass persons 1 In study, GGFRcre value before correction was 1.6 times higher than CGFRcys value. eGFRcre value was closed near the equation of
" $y=-$ " with our improved method corrected by standardization of mv. Although the tests of difference between two correlation coefficient were not significant difference, there were trended to improve the correlation coefficient. In this study, we
hypothesized that the change of mv were related direct hypothesized that the change of my were related direct
proportion to the change of CRE. With the above relatively fair results, we think the validity of our hypothesis in mv decrease patients..
In this study, we could not do the "inulin clearance"
because it was hard to because it was hard to measure in patients of pers isten
vegetative state. And we think also the investization needs more ecgetand wide population.
large and We expect that the correction method may obtained more accurate cGERcre value in patients of skimmy, obesity, and mv

CONCLUSIONS,
The results suggested that eGFRmvere was useful for the

-linical lemistry D-46

The case that a result of HbA1c and GA became estranged

Clinical hemistry D-43

Evaluation of the improved Dimension-TAC assay for th determination of tacrolimus concentrations in whole b
\qquad
 aspartment of Laboratory Medticne, School of Meslicinc

Background

rrolimus is macrolide immunosuppressant derived from the actinomycetes. Because of its narrow
erapeutic index, large inter-and intrapatient variability in pharmacokinetics, and poor correlation se and trough blood concentrations, tacrolimus concentrations in the blood must be monitored reg e Dimension RxL Tacrolimus assay (TACR), using the antibody-conjugated magnetic immunoassay (A,
is reported to show a relatively large variation in the low concentration range. In present study, we

Results

nuscle－mast－volume the beetridten patients
iv Auknmotive Saleyy id Yictim＇s Aid
What Cietkerat lloyytal
ume，Correction method

Paired tiest（p－a）．05 means statistically significant） ．each of distribution of eGFR

处。

$$
\begin{aligned}
& \mathrm{y}=0.97 \mathrm{x}+7.2^{*} \\
& \mathrm{r}=0.367
\end{aligned}
$$

eGFRcys $\quad \begin{gathered}\text {＊Using standardised Major Axis regression } \\ \text { Red line is } y=x\end{gathered}$

 3 ，regression equation and correlationeveral papers reported that eGFRcre was higher elderly diminish body mass persons［1，2］．In our value before correction was 1.6 times higher than eGFRcre value was closed near the equation of improved method corrected by standardization of the tests of difference between two correlation e not significant difference，there were trended to e not significant difference，there were trended t correlation coefficient．In this study，wi that the change of mv were related direct
he change of CRE．With the ave relatively he change of CRE．With the above relatively fair噱
tudy，we could not do the＂inulin clearance＂， is hard to measure in patients of persistent e．And we think also the investigation needs more population．
that the correction method may obtained more解

IONS】

位 renal function in bedridden patients

Colantonio et al．The role of cystatin－C in the confirmation of 116 Feb 1：12（1）：55－67 It al．Implications and importance of skeletal muscle mass in
glomerular filtration rate at dialysis initiation．Joumal of Renal

Clinical Chemistry
PDD－46

The case that a result of HbA 1 c and GA became estranged

OAI Mutou，Hiroki Yanagida，Hirok llo，Shinsuke Ueno，Hrosesil Okada．Kumiko Kouchi，Yutaka Yoshimurn Dept of Central Cinicaal Laboratory，Nara Peretecture General Mesicial Conter，Nara，Japan
 for L－hydroxypro Kazuaki Yamamoto ${ }^{1,}$ Seiya W Clinizal LLaboratury．Medieal Honpii
roline（ $\mathrm{L}-\mathrm{Hyp}$ ）is one of the
included in the collagen．It was at L－Hyp was reduced in a non
acute coronary syndrome ${ }^{\nu}$ ． the association of arteriosclerosis it inding of LDL－cholesterol to 7）deposited in the vascular wall ${ }^{2}$ ，
L－Hyp concentration is measured L－Hyp concentration is measured
but this method takes time for but this method takes time for
ot．Therefore，we developed the simple enzymatic measurement
1－Hyp using a new enzyme，and L－Hyp using a new
s basic performance．

Tell 0742－46－6001
Ex 2358

Role of adiponectin in chronic kidney disease.

Masashi Miyoshi Takayuki Nakao Toshio Doi Division of Medical Technology, Tokushima University Hospital
hemoglobin interference during serum total rements is affected by the biuret reagent usec gai

Serum adiponectin levels were significantly correlated with creatinine level, eGFR, and urinary protein levels.

We categorized the patients with CKD into 4 stages based on the risk of mortality or the stage of renal dysfunction.

Serum adiponectin levels increased with advanced risk stages.

Urinary adiponectin levels were significantly correlated with urinary protein levels, but not with serum adiponectin levels.

Discussion

In conclusion, serum adiponectin levels had increased in patients with progressive renal dysfunction. This finding is in contrast with the protective role of adiponectin.
Urinary adiponectin levels were not correlated with serum adiponectin levels, we found that high serum levels in patients with renal failure were not associated with an increase in urinary level

Inc

Serum adiponectin levels were associated with renal dysfunction.
Adiponectin plays a protective roles in the kidney

U Tokushima University Hospital

Grbler

In this study, we included patients examined at the Tokushima University Hospital with CKD ($\mathrm{n}=228$) .
In addition, healthy participants were enrolled as controls $(n-45)$. We analyzed the patients according to the patient's sex

The patients with renal failure had elevated serum levels of adiponectin

Urinary VEGF-A 165 and estimated Glomerular Filtration Rate Does urinary VEGF-A $A_{165} b$ estimate kidney function ?

O Ryosuke Kikuchi ${ }^{1}$

Yasuda Yoshinori', Hiroyuki Matsumoto', Toyoaki Murohara ${ }^{3}$, Tadashi Matsushita ${ }^{4}$
'Department ot Medical Technique, Nagoya University Hospital, JAPAN.
.
are CKD, VEGF-A and VEGF-A $A_{165} b$?
(VEGF-A) is constitutively CKD is associated with reduced VEGF-A expression. To date, essentially nothinic to adult kidneys
splice isoforms, so called VEGF-A AF-A expression. To date, essentially nothing is known about the role of VEGF-A

Aim

This study aimed to investigate whether urinary VEGF- $\mathrm{A}_{165} \mathrm{~b}$ levels are able to estimate kidney function

Materials and Methods

Total number of 157 patients were enrolled frefully excised from patient who had died and underwent autopsy Immunohistochemical Staining (IHC). The suces ind out patient clinics at Nagoya University Hospital
VEGF-A A $_{16}$ b.
Measurement of Serum \& Urinary VEGF-A A $_{165}$ b: As a pre-treatment, serum samples were treated with DTT
(Cinal concentration is 5 mM) for 60 min at $3{ }^{\circ} \mathrm{C}$. Serum and urinary VEGF-A IG5 $^{\circ} \mathrm{b}$ levels was determined by enzyme-
linked immunosorbent assay (ELISA) accord MyBiosource).
Statistical Analysis : Statistical analyses were completed with GraphPad Prism6.
Results

Figure1. VEGF- $A_{165} b$ Expression in Human Kidney Tissue.
tissues, IHC analyspes were performed. IHC analyses of the human kidney tissues revealed VEGF-A $A_{15} \mathrm{~b}$ localization with podocyte and glomerular endotheilia cells, indicating that
Figure 2.
B

c
Figure2. Correlation Between VEGF-A , $_{165} b$ and Estimated Glomerular Filtration Rate.

were significantly decreased compared to eGFR

Conclusion

Our data indicate the close association of low urinary VEGF-A ${ }_{\text {Ies }}$ b levels with kidney function, suggesting that urinary VEGF-A $1_{165} b$ represents a novel biomarker for kidney dysfunction.

A－3
 \section*{Clinical Chemistry}

 Chemistry}}

WAN－LING CHIU：${ }^{\prime 2}$ ，YU－HSUAN SHAO＇ PEI－WEN LEE＇，CHIA－LING CHEN＇

＇Graduate Instifute of Biomedical Informatics，Taipel Medical University，Taiwan Department of Clinical Laboratory，Taipel city Hospital Yang－Ming Branch．Taiwan Nursing Department，Far Eastern Memorial Hospifal，Taiwan

TAIPEI MEDICAL UNIVERSITY

Maintain the Accuracy of point－of－care testing POCT for Clucometer

Introduction

NCCLS 1995 published AST2－P documents；bedside in vitro diagnostic test called POCT，it appears that the traditionally specialized inspectors work done more to non－professionals and individuals themselves to complete．POCT method is to use a small，portable instrument can be measured in minutes．

ISO 15197： 2013 new standard

1．When blood glucose results $<100 \mathrm{mg} / \mathrm{dl}$（or less），the error should be $\pm_{15} \mathrm{mg} / \mathrm{dl}$ ． 2．When blood glucose results $>100 \mathrm{mg} / \mathrm{dl}$（or more），the error should be $\pm_{15} \%$ ． 3．In addition to the results meet the acceptance criteria should be greater than
95% ，the results should fall within 95% ，the results should fall within 99% of the A and B zones of error grid．

Result

The intraclass correlation coefficient inferential statistic that can be used when quantitative measurements are made on units that are organized into groups．This result shows that the two blood glucometers and biochemical machine alignment are qualified standard．Among them，Roche performance was excellent，but no statistically significant difference in terms．

Methods

Taipei City
Hospital
Yang－Ming Branch

$c^{-3} \mathrm{c}-3$

Clinical Chemistry

Clinical Chemistry
 PD-56

Evaluation of RG-II POCT Devices for Glucose Testing

Hye Jung Kim, Hyc Lim Kim and Yong Lim
Bongseng Memorial Hoxpital, Busan, Korea
${ }^{-D}$ Department of Clinical Laboratory Science, Dong-eui University, Busan, Korea

Abstract

 ROA 1 Introduction

Results

Conclusion

Erroneous results are not infrequent when glacos the he hypolycaecmic
directions from the ceference $B G$ value. Patients found to
directions from the efeference $B G$ value. Patiens fold the intensive care unit.

Clinical Chemistry PD－57

Development of ICG measurement
 （long－wavelength control）using an automatic biochemical analyzer

Yuka Sato ${ }^{11}$ ，Masanori Scimiya ${ }^{2)^{2}}$ ，Toshihihiko Yoshida ${ }^{11}$ ，Yuji Sawabe ${ }^{11}$ ， Kazuyuki Matsushita ${ }^{1)}$
1）Division of Laboratory Medicine，Chiba University Hospital 2）International University of Health and Welfare

【Background】

Indocyanine Green plasma disappearance rate（ICG－ PDR）is important for understanding liver functions However，the conventional manual method to determine the ICG－PDR has two disadvantages
The first issue is that the conventional manual method requires venipuncture two times because blood samples are needed before and after ICG loading in order to calculate the ICG－PDR．

The second issue is that the conventional manual method involves manual sampling and data input， which is inefficiently and may lead to careless mistakes．Therefore，an autoanalyzer method and auto data input system is desired．

【Objectives】

The aim of the present study was to development the new autoanalyzer methods（long－wavelength control method）and to evaluate the application for ICG－PDR．

【Materials and methods】

Serum samples were collected from 150 patients undergoing the ICG－PDR in our hospital．Written informed consent was obtained from all participants prior to blood sampling，and the study protocol was approved by the Ethics Committee of Chiba University Graduate School of Medicine．

ICG measurement methods

1）Manual－conventional method（reference method） The absorbance of serum samples before and after ICG loading was measured at 805 nm using a spectrophotometer．
2）Manual－ICG decolorization method；The absorbance of an ICG－loaded sample was measured， a 6% solution of hypochlorous acid was added，and absorbance was measured for use as a blank 3）Autoanalyzer conventional method；ICG was measured according to a reference method． 4）Autoanalyzer－ICG decolorization method；Sodium periodate solution（final concentration： 0.75% ）was used for decolorization，and the absorbance was measured for use as a blank．
5）The new autoanalyzer methods is based on the fact that ICG has little absorption at 885 nm ． Absorbance of serum at 805 nm without ICG loading is estimated from that at 885 nm with ICG loading． Jubsequently，the estimate is subtracted from the absorbance of serum after ICG loading．And we performed a basic study．

【Result（performance of new autoanalyzer method）】
1）Reproducibility
Within－run reproducibility（ $\mathrm{n}=20$ ）

ICG value	CV $(\%)$
$0.15 \mathrm{mg} / \mathrm{dL} .($ ICG $15 \%)$	0.5%
$0.32 \mathrm{mg} / \mathrm{dL}($ ICG $32 \%)$	0.4%

Between－run reproducibility（ $\mathrm{n}=24$ ）

ICG value	CV（\％）
$0.13 \mathrm{mg} / \mathrm{dL}$（ICG 13\％）	0.4%
$0.27 \mathrm{mg} / \mathrm{dL}$（ICG $27 \%)$	1.5%

The reagent was stable for three weeks or longer after they were set in an automatic analyzer．

2）linearity range of concentration

The linearity range of concentration was $0-1 \mathrm{mg} / \mathrm{dL}$ ICG．
3）Correlation with manual conventional method and various assays

【Conclusion】

The new autoanalyzer methods does not require blood sampling before ICG injection， and enables the automatic calculation of the retention rate，making it practicable．

4）Interference study

[^0]: 1. We fount that itssribution of MDRI genotype among controls (CC, 41.1\%: CT, 44.0\%; and TT 14.7\%) was significantly alfferent from that among bladder cancer cases ($24.0 \%, 53.7 \%$ and 22.3%, respectivel() ($p<0.05$)
 2. Sigmificanlly increase rish for bladder cancer was observed.
 3. These resulfs suggest that MDRI 3435 gene might have potential as a genetic marker for bladder cancer
